Hybrid Systems Modeling for Robots with Contact

Aaron M. Johnson

Collaborators: Sam Burden, Dan Koditschek

IROS 2017 Workshop on Frontiers in Contact-rich Robotic Interaction: Modeling, Optimization and Control Synthesis
What do we mean by “Hybrid System”

\[H := (\mathcal{J}, \Gamma, D, F, G, R) \]

Motivation: Why hybrid systems modeling?

- Insight into design, control
- Compare different systems
- Understand the problem structure
- Analysis of the dynamics
 - Provable properties
 - Parametric dependence
- Differential analysis
 - Identifying non-smooth points

\[
\frac{\partial ((U\lambda)_{2n} - (U\lambda)_{1n})}{\partial \theta_d} \bigg|_{\theta_d=0} = \frac{2 \rho \tau \sin^2(\theta_m)}{\ell^2 \cos(\theta_m)} < 0
\]

Robots with Changing Contact Conditions

When should you not look at contacts?

J. Bender and A. Schmitt, “Constraint-based collision and contact handling using impulses,” CASA, 2006
What do we mean by “Hybrid System”

\[\mathcal{H} := (\mathcal{J}, \Gamma, \mathcal{D}, \mathcal{F}, \mathcal{G}, \mathcal{R}) \]

Standard Definition of Hybrid System

How Standards Proliferate:
(See: A/C chargers, character encodings, instant messaging, etc.)

Situation:
There are 14 competing standards.

14?! Ridiculous!
We need to develop one universal standard
that covers everyone's use cases.
Yeah!

Situation:
There are 15 competing standards.

https://xkcd.com/927/
The (Self-)Manipulation Hybrid System

$\mathcal{H} := (\mathcal{I}, \Gamma, \mathcal{D}, \mathcal{F}, \mathcal{G}, \mathcal{R})$

Specifically, we want a model that has:

- Simple physical assumption (e.g. plastic impact, massless legs)
- Disjoint domains of varying dimensions
- Guards with arbitrary co-dimension (not just on boundary)
- Certain analytic and geometric structure (e.g. hybrid, corners)
- Consistency properties
 - Deterministic (and that the guards are disjoint)
 - Non-blocking
 - Finite (≤ 2) transitions at a time t
 - Unique execution from any mode (i.e. can’t get stuck in the wrong mode)

Physical Assumptions

- Simplifying physical assumptions:
 - Rigid bodies
 - Plastic impact
 - Persistent contact
 - Coulomb friction
 - Massless legs

All models are wrong, but some models are useful

Massless Dynamics

• Typical impulse calculation inverts the inertia tensor:
\[\hat{P}_J = (A_J \overline{M}^{-1} A_J^T)^{-1} A_J \hat{q} \]

• Instead solve the dynamics and constraints simultaneously:
\[
\begin{bmatrix}
\dot{q} \\
\lambda
\end{bmatrix} = \begin{bmatrix}
\overline{M} & A^T \\
A & 0
\end{bmatrix}^{-1} \begin{bmatrix}
\gamma - \overline{N} \\
0
\end{bmatrix} - \begin{bmatrix}
\overline{M} & A^T \\
A & 0
\end{bmatrix}^{-1} \begin{bmatrix}
\overline{C} \\
\dot{\Lambda}
\end{bmatrix} \dot{q}
\]

• Now the constrained impulse is well defined:
\[\hat{P}_J := -\Lambda_J A_J \hat{q} \]
\[
\begin{bmatrix}
\overline{M}_J^+ & A_J^{+T} \\
A_J^+ & \Lambda_J
\end{bmatrix} := \begin{bmatrix}
\overline{M} & A_J^T \\
A_J & 0_{J \times J}
\end{bmatrix}^{-1}
\]

Complementarity Constraints

- **Impulse/Velocity Comp.:**
 \[
 U_j(\hat{P}_J) \geq 0, \quad A_j q^+ = 0 \quad \forall j \in J
 \]
 \[
 U_k(\hat{P}_J) = 0, \quad A_k q^+ > 0 \quad \forall k \in \mathcal{I} \setminus J
 \]

- **Alternate Formulation**
 \[
 U_j(\hat{P}_J) \geq 0, \quad A_j q^+ = 0 \quad \forall j \in J
 \]
 \[
 U_k(\hat{P}_J) = 0, \quad U_k(\hat{P}_{J \cup \{k\}}) < 0 \quad \forall k \in \mathcal{I} \setminus J
 \]

- **Or, in a unified form:**
 \[
 (k \in J) \iff (U_k(\hat{P}_{J \cup \{k\}}) \geq 0) \quad \forall k \in \mathcal{I}
 \]

- **Same for Force/Acceleration:**
 \[
 U_j(\lambda_J) \geq 0, \quad A_j \ddot{q} + A_j \dot{q} = 0 \quad \forall j \in J
 \]
 \[
 U_k(\lambda_J) = 0, \quad U_k(\lambda_{J \cup \{k\}}) < 0 \quad \forall k \in \mathcal{I} \setminus J
 \]
 \[
 (k \in J) \iff (U_k(\lambda_{J \cup \{k\}}) \geq 0) \quad \forall k \in \mathcal{I}
 \]

Spurious Transitions

- Even once these modeling assumptions are rectified, problems still arise
- Impacts at one contact point can cause others to lift off
- Similar to the rocking block Zeno problem
- The pseudo-impulse couples in continuous forces to truncate these transitions

A point mass impacting a hill will transition to sliding up it
• For any steep angle $\theta < 90$
• For any arbitrarily slow speed
• A free body diagram of the impact makes this clear
• Add a pseudo-impulse proportional to the continuous time forces
• The pseudo-impulse allows the mass to come to a rest

The (Self-) Manipulation Hybrid System

\[\mathcal{H} := (\mathcal{I}, \Gamma, \mathcal{D}, \mathcal{F}, \mathcal{G}, \mathcal{R}) \]

\[\mathcal{I} := \{I, J, \ldots, K\} \subset \mathbb{N} \]

\[\Gamma \subset \mathcal{I} \times \mathcal{I} \]

\[\mathcal{D} := \bigsqcup_{I \in \mathcal{I}} D_I \]

\[\mathcal{F} : \mathcal{D} \to T\mathcal{D} \]

\[F_I := \mathcal{F}|_{D_I} \]

\[\mathcal{G} := \bigsqcup_{(I,J) \in \Gamma} G_{I,J} \]

\[G_{I,J} \subset D_I \]

\[\mathcal{R} : \mathcal{G} \to \mathcal{D} \]

\[R_{I,J} := \mathcal{R}|_{G_{I,J}} : G_{I,J} \to D_J \]

- Key idea: Build the hybrid system out of “hybrid” parts:
 - Domain and guards are hybrid manifolds (with corners), i.e. a finite disjoint union of manifolds w/corners

 \[\bigsqcup_{I \in \mathcal{I}} M_I = \bigcup_{I \in \mathcal{I}} \{I\} \times M_I = \{(J, x) : J \in \mathcal{I}, x \in M_J\} \]

- The flow is a hybrid vector field on the hybrid tangent bundle

- An execution runs on a hybrid time domain,

 \[\chi : \mathcal{T} \to \mathcal{D} \]

 \[\mathcal{T} = \bigsqcup_{i=1}^{N} T_i \]

Why hybrid components?

\[T = \{ (-\infty, t], [t], [t, \infty) \} \]
The (Self-)Manipulation Hybrid System

\[\mathcal{H} := (\mathcal{I}, \mathcal{I}, \mathcal{D}, \mathcal{F}, \mathcal{G}, \mathcal{R}) \]

- Specifically, we want a model that has:
 - Simple physical assumption (e.g. plastic impact, massless legs)
 - Disjoint domains of varying dimensions
 - Guards with arbitrary co-dimension (not just on boundary)
 - Certain analytic and geometric structure (e.g. hybrid, corners)
 - Consistency properties
 - Deterministic (and that the guards are disjoint)
 - Non-blocking
 - Finite (\(\leq 2\)) transitions at a time \(t\)
 - Unique execution from any mode (i.e. can’t get stuck in the wrong mode)

Conclusions

- Better simple models
- Specific physical assumptions
 - Massless legs
 - Pseudo-impulse (more plastic than plastic)

- Hybrid system model structure

\[\mathcal{H} := (\mathcal{J}, \Gamma, \mathcal{D}, \mathcal{F}, \mathcal{G}, \mathcal{R}) \]
\[\mathcal{J} := \{I, J, \ldots, K\} \subset \mathbb{N} \]
\[\Gamma \subset \mathcal{J} \times \mathcal{J} \]
\[\mathcal{D} := \bigsqcup_{I \in \mathcal{J}} D_I \]

\[\mathcal{F} : \mathcal{D} \rightarrow TD \]
\[F_I := \mathcal{F}|_{D_I} \]

\[\mathcal{G} := \bigsqcup_{(I, J) \in \Gamma} G_{I, J} \]
\[G_{I, J} \subset D_I \]

\[\mathcal{R} : \mathcal{G} \rightarrow \mathcal{D} \]
\[R_{I, J} := \mathcal{R}|_{G_{I, J}} : G_{I, J} \rightarrow D_J \]

Convergence/Divergence of Contacts

Relating different models

Modeling hierarchy (Mathematical or physical)

- **TEMPLATES**
 - Simple
 - General
 - Prescriptive
 - Control guide

- **ANCHORS**
 - Elaborate
 - Representative (less overconstrained)

- **ORGANISM**
 - Complex
 - (many degrees of freedom, high dimensionality)
 - Redundant
 - Joints
 - Muscles
 - Neurons

Nature of system

Legged land locomotion

- Spring-loaded inverted pendulum (SLIP)
- Lateral leg spring (LLS)
- Multiple legs, joints and muscles
- Multiple legs, joints and muscles

More complicated contact
Thank You

P.S. Ask me about PhD and faculty positions at CMU!
Thank you to the ARL/GDRS RCTA project.